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An inviscid KBrm&n-type vortex-shedding model is employed to show that multi- 
ple modes of vortex streets are possible, for flow around a given obstacle. This is 
in confirmation of various experimental observations in recent years, which were 
challenged by opposing claims that these were due to experimental inaccuracies. 

1. Introduction 
Several experimental observations of periodic vortex trails behind stationarj- 

bodies in two-dimensional flow (Tritton 1959, 1971; Berger 1964) suggest that 
there are two different possible shedding modes for a certain range of Reynolds 
numbers. These modes are represented by two vortex streets of different stream- 
wise and lateral spacing appearing alternately under the same experimental 
conditions, and two separate relationships between the frequency and oncoming 
flow speed (Reynolds number). 

The question of the actual existence of these modes is still rather controversial 
(Berger & Wille 1972) owing to the work of Gaster (1969, 1971), who concluded 
that the apparently different modes resulted from non-uniform incoming flow 
on the obstacle producing the vortex street. 

Taneda (1959), who had a unique experimental arrangement permitting 
observations very far downstream, presented evidence of rather long-lived 
stable vortex streets suddenly and spontaneously breaking down, and being 
re-established with larger streamwise and lateral spacing a short distance later. 
Experiments with decelerated flow (Durgin & Karlsson 1971) and multiple trails 
(Zdravkovich 1968) also show such behaviour. 

This variety of data raises the possibility of alternative vortex-wake develop- 
ments for a given combination of free-stream flow and obstacle. No theoretical 
treatment of this phenomenon has been found in the literature, and the purpose 
of this brief note is to test the possibility of such alternative wake developments 
occurring, using an inviscid Kkmtin-type model. The inviscid vortex-shedding 
approach has given surprisingly good results for different problems, from Kbr- 
man's original analysis of shedding from a cylinder to the recent work by Clements 
(1973) on bluff bodies. 

t Present address : Department of Aeronautical Engineering, Technion, Haifa, Israel. 
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2. Analysis 
The streamwise and lateral spacing of vortices shed from a stationary or 

moving body change in the vicinity of the obstacle (Weihs 1972), settling down 
(stability considerations aside) to constant values far downstream In  the 
above-mentioned paper (referred to as I from now on) the author examined 
thrust-type vortex trails and found that each set of data such as free stream 
velocity and body dimensions and movement results in it unique downstream 
trail, when requiring constant spacing far away from the obstacle. 

In  the present note, the drag-type vortex trails shed from stationary two- 
dimensional bodies in inviscid flow are studied. 

Define the initial streamwise spacing 2d of the vortices as the distance be- 
tween vortices due only to the oncoming velocity and not including the effects 
of induced velocity. The distances measured between successive vortices of the 
same sign and between rows far from the body are 2a and 2h respectively and 
are different from those measured closer to the obstacle because of effects of 
varying induced velocity on the vortices as they move downstream (I), 

Assuming now that at  a large distance from the body the vortex street 
becomes of regular shape, i.e. h and a are constants, one can find relations be- 
tween the initial and final spacings. This assumption implies that the trails are 
stable. While it has been analytically shown that all inviscid K&rm&n-type 
streets are ultimately unstable (Kochin, Kibel & Roze 1964) experimental evi- 
dence shows the existence of regular trails for large distances (Taneda 1959). 

2d = U T ,  (1 )  
where U is the oncoming velocity and T the shedding period, and 

2a = 2d - V T ,  ( 2 )  
where V is the induced velocity of each vortex in a K&rm&n inki te  vortex trail, 

By definition 

i.e. (Milne-Thomson 1968) kn nh 
V = -tanh-. 

xa CL (3) 

Here k is the absolute vortex strength. The fluid is taken to be inviscid, so that 
all vortices are of the same strength. Equation (3) may be used as a direct result 
of the requirement of constant vortex spacing far downstream, for when one get,s 
far enough from the original disturbance the situation approaches that of the 
K&rmhn street stretching to infinity in both directions (I). 

Substituting (1) and (3) into (2) we have 

a (4) 

We now take the spacing ratio h/a to be a separate parameter and obtain a 
quadratic equation for a in terms of U ,  T ,  k and E ( = h/a). Rearranging and solv- 

( 5 )  
ing this equation gives a = guT[l (1 -A)&],  

where h = 4rrratanhns; ra = k/UgT. 

h is non-negative because each of the quantities included is separately positive. 
As a result, there are two distinct physically possible (positive) values of the 
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streamwise spacing a for each value of the parameters when 0 < h < 1, a single 
solution when h = 0 or A = I and no real solutions when A > 1. This result is 
significant in two ways. First, it defines a range of the parameter h for which 
periodic shedding is obtained. Then it shows that, within this range, there 
are always (except for two limiting cases) two possible vortex streets with the 
same spacing ratio for any body placed in a given stream. 

Looking at  the limiting cases, we see that h = 0 is fulfilled only when h or k 
vanishes, or there is no periodic shedding. In  other words, this is a trivial case 
of no vortex street, or of zero drag (h  = 0) .  

The previous analysis has shown that, starting from the classical case de- 
scribed by Karmkn, one can obtain two different vortex streets, with equal 
spacing ratios but different streamwise and lateral spacing. This basic result can 
be carried somewhat further by taking the drag force into account. 

The mean drag force on the obstacle producing the vortex streets is, in the 
present notation (Kochin et al. 1964), 

pdc2 pnkh 
a a 

D = -  +- (U-2V) .  

Substituting the two possible values of a from (5) separately into (6) one obtains 
two distinct values for the drag on the body. In  the cases reported by Berger 
(1964) and Tritton (1959, 1971) this result is physically plausible, for in these 
experiments the switching from mode to mode occurred near the cylinder. The 
presence of a different configuration of vortices would lead to changes in the 
induced velocity field at  the body. In  the case of a circular cylinder this would 
result in changes in the base pressure and in the drag? experienced. Some 
experimental indication of this appears in Tritton's (1959) experiments on the 
deflexions of fibres shedding vortex streets. 

On the other hand, the spontaneous change from one street to the other far 
downstream, as in the experiments reported by Taneda (1959), would have 
negligible effects upon the drag. In  this situation the analysis in the previous 
section must be modified. Here the argument is that the drag on the obstacle 
is a constant. As a result some other constraint must be relaxed so that we do 
not have an over-defined system. 

In  such long-lived vortex streets, viscosity, however small, has time to act 
upon the vortices, so that the former assumption of constant vortex strength k 
is less justified in this case. We shall therefore now allow k to vary. However, 
we still use (3) and (6), which were derived for vortex streets with constant k. 
This implies that each vortex street has constant k, but that these vortex 
strengths are not equal. In  terms of the observed transition from one trail to  
the other, we now assume that all dissipation of vorticity takes place during 
transition. 

We have now the three equations, (2), (3) and (6), for the variables a, k and V ,  
which are functions of parameters D, E ,  U and T. From (2) and (6), 

k2( 1 - T E  tanh m ) / u  + ksU - D' = 0, (7)  

t The author is grateful to Prof. R. Wille for pointing this out to him. 
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where D' = D/pn. Also from ( 2 )  and (3) 

Ic = ( U  - 2a/T)  (2a/n tanh ns). (8) 

After substitution of (8) into (7) and some further manipulations, 

where 
a3+p2a2+pla+~o = 0 (2  $. I ) ,  (9) 

and x = 1 ~ s  tanhm. (9a) 

(7) :  

When x = I (s N 0.382), a quadratic equation for a is obtained, as is obvious from 

a2 - ~ u U T  + ( D ' T z / ~ U E ~ )  = 0. 

a = $UT[1  f- (1-4o'/s2U3T)4], 

(10) 

(11)  

i.e. there again are two distinct positive values of a. Returning to (9) and using 
the criteria for the number of real solutions (Abramowitz & Stegun 1965), it can 
be shown that for all values of the spacing ratio 0 < s < 1 except those close to 
E = 0.382 there are three distinct real solutions. In  establishing this general 
result there is some difficulty as the coefficient Po includes the drag, while the 
others include only the initial longitudinal spacing UT. The expression indepen- 
dent of s in Po is D'T2. This can be written as 

(12) 

where A ,  stands for wetted area. In  the case of a two-dimensional circular 
cylinder A ,  = 2 m  per unit length, where r is the radius. The Strouhal number 
S = 2r /UT,  and so finally 

The drag coefficient and Strouhal numbers for vortex shedding from cylinders 
are known empirically and a relatively accurate estimate of the factor SC, 
can be made, being of order 0.1. 

Having found that in the region of interest (s 21 0-3) there are three real solu- 
tions t o  (9), it now remains to determine their sign. For E < 0.382, 1 - x is positive, 
so that P,, Po < 0 and ,8, > 0 in this range. Prom the general properties of the 
cubic equation we have (Abramowitz & Stegun 1965) 

The solutions of (10) are, recalling that x = 1 here, 

D'T2 = DT2/pn = $pU2A,CDT2/p~, 

D'T2 = &SCD( UT)3. (13) 

3 

i = l  
JJ ai = -Po. 

From (14) we see that either one, or all three roots of (9) must be positive. If 
only one root is positive, then its absolute value (call it a,) must be larger than 
tthe sum of the absolute values of the two other roots, because 

2 ai = -p2. 
i = l  
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But the cubic equation also fulfils 

,13, is positive in (9), but if only a, > 0 then, as a result of the former condition 
(14), condition (16) implies that /3, < 0, as lala,] > la,a,l and lala31 > la,a,l. 
Therefore, the case of one positive root only is ruled out, and we obtain the result 
that in the region of interest (9) has three distinct possible positive solutions. 

ala,+a,a3+a,a, = PI. (16) 

3. Discussion 
The interesting and rather unexpected result of the analysis above, that the 

Kftrman inviscid vortex-street model allows for multiple trail modes, strengthens 
the case of the experimenters who obtained such modes. The obvious next step 
to establish beyond doubt the existence of alternative modes is to correlate ( 5 )  
and/or (9) with experimental data.? 

The assumption of equal spacing ratios for the different modes, which is the 
only additional one required in the analysis of the previous section, is not essential. 
Taking h/a to be variable between the possible modes leads to equations which 
give multiple solutions for a dependent upon the function h = h(a). These were 
obtained, for (4), by expanding h(a) as a Taylor series. 

The main difficulty here is that the actual form of this function is not known. 
As a result, the present analysis used only h/u = constant for a given combina- 
tion of obstacle and velocity. This is partially justified from inviscid stability 
theory, which shows that certain spacing ratios are preferred. Also, examination 
of Taneda’s and Berger’s flow visualizations tends to confirm that the spacing 
ratios of the ‘primary’ and ‘secondary’ streets are approximately equal. This 
is a very crude approximation taken from the published data, but more accurate 
measurements of lateral spacings for the two modes have not been found. 

From ( 5 ) ,  we have for the ratio of streamwise spacings 

1 + (1 -A)+  ??= 
a, l - ( l - A ) $ .  

Taneda (1959) has tabulated a number of experimental values for the ratio 
a,/a, (in his table 11). It must be recalled that these measurements were made 

7 A referee has pointed out in this connexion that, while actual lateral and streamwise 
vortex-street spacings are both observed to increase as one moves downstream, ( 5 )  suggests 
the opposite. This result is an artifact of the inviscid Kitrm&n vortex-street model, as vortices 
near the obstacle have only a semi-infinite street (I) inducing a retarding velocity V ,  while 
vortices far downstream ‘see’ an infinite street, stretching in both directions. The referee 
also suggested a simple way of removing this difficulty: modifying the definition of initial 
spacing to include the mechanics of formation of the discrete vortices by putting, instead 
of (111 

2d = aUT, ( l a )  
where 01 < 1 is an empirically found constant. Repeating the analysis gives 

a 1  
d 2a 
- = - [ l + ( l - h ) * ] ,  

so that a > d as in experiment, while the main conclusion on the existence of two distinct 
vortex-street modes is unchanged. A similar modification can be carried out on (9). 
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FIGURE 1. Ratio of streamwise spacing of secondary to primary vortex streets downst,ream 
of a circular cylinder, measured by Taneda (1959), zw. Reynolds number. Cylinder diameter: 
0, 0.2cm; x ,0*3cm; +, 0.48om. 

with aluminium particles in a large towing tank. The inferred breakdown and 
re-establishment of vortex streets may therefore be due to unobserved influences 
such as residual currents and uneven reflexions in this case, and not describe 
multiple modes at  all. Assuming, however, that this is a genuine case of such 
modes appearing, his results have been plotted (see figure 1) as a function of the 
Reynolds number, and an approximate empirical relationship was found. From 
figure 1, 

whereA 2: 22O.Using(l8) 
aJal 2: AIRe, (18) 

(19) 

which shows the rather weak dependence of h on the Reynolds number. It varies 
from h = 0.77 when Re = 60 to h = 0.91 at  Re = 120, which is the range of 
Reynolds numbers for which multiple modes are observed. Consequently any 
correlations attempted with experimental data have to be based on very accurate 
measurements. 

Attempts to obtain a general comparison by means of empirical relationships 
between the constituents of ai have not been very significant. The dependence 
of the vortex strength and the spacing ratio upon the Reynolds number or ex- 
ternal dimensional variables is not known precisely enough. Trial computations 
were made on the basis of relationships such as 

h = 1 - [ (A -Re)/@ +Re)]', 

lc = RUZT, XRe = A Re - B, (20) 

where A, A and B are empirical constants and S the Strouhal number (Berger 
1964). These gave results of the right order of magnitude but this agreement has 
to be treated as merely fortuitous for the present. It is clear therefore that more 
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experimental data, with special emphasis on the unsteady drag, spacing ratios 
and degree of absorption of shed vorticity in specific situations of multiple- 
mode shedding, are required. 

These would firmly establish whether the present result of multiple modes of 
shedding, obtained by the greatly idealized K&rm&n model, is a true description 
of the rather controversial dual-mode shedding data. 

Comments by Professors Sir James Lighthill and R. Wille on an earlier version 
are gratefully acknowledged. 
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